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Inverse Reinforcement
Learning from Summary Data

Background

RL models are commonly used for modeling human decision-making. A key
problem in this respect is parameter inference based on realistic observation data.

It is common that observation data is incomplete, contains noise, or observations
are missing. Occasionally only summarized aggregate observations might be
available. However, traditional IRL methods tend to assume full observability.

When small amounts of observation noise is present [1], or few observations are
missing [2], EM-type solutions exist for estimating the latent observations, allowing
traditional IRL methods to be used. However, this approach is not feasible with
significant observation noise or most of the observations missing.

[1] Activity forecasting, Kitani et al. 2012
[2] EM for IRL with hidden data, Bogert et al. 2016
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ABC Approximation

Prior

The ABC approximation uses the

discrepancy between the Monte \/5 A

Carlo sample and the observation
Unnormalized likelinood Unnormalized posterior

data for estimating the likelihood.
Thus it only requires that can be /\ /\
evaluated, and it does not suffer

from the same numerical problems  Discrepancy: A —B
as MC. The discrepancy function o( o) — [0, 00)

needs to be chosen; often the
prediction error function is suitable.

Likelihood:  L.(0|5,) = P(dy < ¢|0)

Our Contributions

We demonstrate that parameter inference is possible for RL models even in the
presence of arbitrary trajectory-level observation noise, o(¢), thus significantly
extending the types of situations where RL models can be applied.

We derive the exact Bayesian solution for this problem, but demonstrate that it is
very expensive to evaluate. We propose two approximations: a Monte-Carlo
estimate and an ABC estimate, which are significantly faster to evaluate.

We demonstrate that the methods allow full posterior inference for a realistic
model of human cognition, based on realistic but very restricted observation data.

Take-home message: Regarding partial observability in IRL, there now exists
formulations for three different situations:

(1) Agent has partial observability of the environment state — POMDP model
(2) External observer has partial observability on state level
— traditional IRL methods can be extended
New: (3) External observer has partial observability on trajectory level
— presented methods can be used
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We estimated the likelihood-surfaces from samples using Gaussian Processes
and Bayesian Optimization. We then drew samples using MCMC to estimate
the shape and mean of the distribution.

IRL-SD Problem

Assume an agent is behaving optimally within an MDP environment, producing

trajectories {¢,, ¢, ..., gy}. Further assume an observation noise function o(g) =

P(¢,lS) which hides the true trajectories from the external observer, and that the
MDP is not fully known to the external observer.

The IRL from Summary Data (IRL-SD) problem is then:
Given observations {¢_4, ¢,, --., &\ the function o and a prior P(0)

Estimate the unknown parameters 6 of the MDP

Experiments (simulated data)

Inference quality (error to ground truth,
prediction error) with different grid sizes
and dimensionality of reward function

We performed experiments
with grid world environments
of various sizes and with
variable number of unknown
parameters.

Error to ground truth (2 features)
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We demonstrate that the
approximate methods scale
significantly better than exact
solution, while maintaining
similar inference performance.

Exact Likelihood

The exact likelihood for the . N
IRL-SD problem is tractable, L©1Z0) =[[PEosl)=]] D  PGEols)PGil6)
but very expensive to evaluate i=1 i=1§i€Zqp

as we need to integrate over l. li—1 . i S
all plausible true trajectories. P(§il0) = P(s)) 1_[ 7wy (Sp» ar) P (sS4 118, ap)
t=0

Monte-Carlo Approximation

This approach estimates the
likelihood based on sampled

trajectories. The approximation can L (9|=,) :

P(Sia |§n)P(§n |9)
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be computed as long as we know o i=1 " MC e cEue P(§10)
as a distribution P(¢|g). However, N
the approach suffers from :H Z P& lEn).

numerical problems with rare 1 Nmc
observations, for which P(¢_|g) may

be zero for all sampled trajectories.
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Experiments (real data)

The task of the user was to
repeatedly search for a given item

Predictions vs. observations (model fit)

from a drop-down menu, and click 2 MAP Observation data
the item if present. The unknown TCT (abs) 430 ms 470 ms
parameters were fixation duration, ¢ ®® 980 ms 970 ms
click delay and probability of > 14 19

Saccades (pre) 3.1 2.2

recalling menu layout from memory.

The condition when the target is absent from the menu 1s denoted by
(abs), and the condition when the target is present by (pre)

The observation only contained the
duration of the episode, and Approximate posterior distribution

whether the user found the item or - L
not (ie. no states observed, only -
final action known) .
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See also earlier work: Kangasraasio et al. Inferring Cognitive Models from Data using Approximate Bayesian Computation.

In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI'17, pp. 1295-1306. ACM, 2017.
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