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Modelling human decision-making: Motivation

Our overarching goal is to have accurate white-box models of human
decision-making

Applications of high-fidelity user models

Replicating demonstrated behavior (imitation learning)

Optimizing user interfaces (human-computer interaction)

Estimating cognitive state/goals of humans (chatbots)

Understanding human cognition (cognitive science)
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Modelling human decision-making: Problem

How to infer the parameters of sequential decision-making models when
the available observation data is limited?
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Reinforcement learning models

We use the RL framework for modelling sequential decision-making

The main assumption is that human decisions can be approximated by
an optimal policy trained for a certain decision problem
(eg. MDP, POMDP)

“Humans make rational decisions within the limitations they have”
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Inverse reinforcement learning (IRL)

Inverse reinforcement learning:
Given a set of observations, which MDP has a matching optimal policy?

Traditional IRL problem

Given

an MDP with reward-function R(s; θ), θ unknown

a set of state-action trajectories Ξ = {ξ1, . . . , ξN} demonstrating
optimal behavior, where ξi = (s i0, a

i
1, . . . , a

i
Ti−1, s

i
Ti

)

a prior P(θ)

Determine a point estimate θ̂ or the posterior P(θ|Ξ)
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Existing solutions

Traditional IRL has been gradient descent on the likelihood

L(θ|Ξ) =
N∏
i=1

P(s i0)

Ti−1∏
t=0

π∗θ(s it , a
i
t)P(s it+1|s it , ait)

Tractable when all states and actions are observed
what about when this is not the case?

Previous work: If state observations are corrupted with i.i.d. noise1 or
part of them are missing2, EM-approach can be used to estimate the true
states, after which standard IRL methods apply

However, this approach is not feasible in the more realistic cases, with
complex non-i.i.d. noise or most of the states and actions missing

1Activity forecasting, Kitani et al. 2012
2EM for IRL with hidden data, Bogert et al. 2016
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IRL from summary data (IRL-SD)

We ask whether IRL is possible in realistic cases, where the true
trajectories ξi are filtered through a generic summarizing function σ,
yielding summaries ξiσ ∼ σ(ξi )

Example:
Alice walks to work every day along her preferred secret route. Could we
infer Alice’s scenery preferences given only the durations of the
commutes and the location of her work and home?
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an MDP with unknown parameters θ

a set of summaries Ξσ = {ξ1σ, . . . , ξNσ} from optimal behavior

the summary function σ

a prior P(θ)
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Exact solution

The likelihood corresponding to an IRL-SD problem is

L(θ|Ξσ) =
N∏
i=1

∑
ξi∈Ξap

P(ξiσ|ξi )P(ξi |θ),

where we marginalize over the unobserved true ξi

The set of all plausible true trajectories is Ξap ⊆ STmax+1 × ATmax

P(ξiσ|ξi ) is determined by the summary function σ

The likelihood of a trajectory is as before

P(ξi |θ) = P(s i0)

Ti−1∏
t=0

π∗θ(s it , a
i
t)P(s it+1|s it , ait)

Takeaway: L(θ|Ξσ) can be evaluated, but it is very expensive to do so
due to Ξap being generally large or challenging to determine
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Monte-Carlo approximation

We can estimate L(θ|Ξσ) by solving π∗θ and then sampling NMC

trajectories, ΞMC , leading to the Monte-Carlo estimate

L̂(θ|Ξσ) =
N∏
i=1

1

NMC

∑
ξn∈ΞMC

P(ξiσ|ξn)

However

P(ξiσ|ξn) may be 0 for all ξn ∈ ΞMC , forcing L̂(θ|Ξσ) to be 0
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Takeaway: L(θ|Ξσ) can be estimated with Monte-Carlo, but there are few
technical issues we would like to avoid
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Approximate Bayesian computation

ABC also performs inference using on Monte-Carlo sampling

Instead of estimating the likelihood of each trajectory ξi separately,
the likelihood of the entire observation set Ξ is estimated together

How ABC works:

Simulate observations using the MC sample: Ξsim
σ = {σ(ΞMC ,n)}

(only requires us to sample from σ)

Estimate discrepancy: δ(Ξσ,Ξ
sim
σ )→ [0,∞)

(matches distributions; reduces effect of individual rare observations)

The ε-approximate ABC likelihood: L̃ε(θ|Ξσ) = P(δ(Ξσ,Ξ
sim
σ ) ≤ ε|θ)

Intuition: If simulating observations with θ leads to small prediction error,
then likelihood of θ is high and vice versa

Takeaway: The issues with MC (numerical problems with rare
observations, σ known as a distribution) can be avoided by using ABC
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Inference

Now we can estimate L(θ|Ξ) at any θ, but how to find the best θ ∈ Θ?

Evaluating the functions is still expensive
The functions don’t have accessible gradients
Due to limited observability (σ), parameter uncertainty is likely large

We estimate the log-likelihoods using a GP surrogate model, fit using
Bayesian optimization. Mean and shape of distribution estimated from
MCMC-samples.
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Simulation experiment

We used grid world environments to validate our approach

Task was to infer reward weights for state features: R(s) = φ(s)T θ

We only knew the start and end locations of the agent and the length
of the trajectory: ξσ = (s0, sT ,T )

Miniature example:
“What kind of terrain might the
agent prefer, given that moving
from A to B took it T steps?”

Antti Kangasrääsiö, Samuel Kaski (Aalto) ECML PKDD 2018 September 12, 2018 12 / 20



Simulation experiment

We used grid world environments to validate our approach

Task was to infer reward weights for state features: R(s) = φ(s)T θ

We only knew the start and end locations of the agent and the length
of the trajectory: ξσ = (s0, sT ,T )

Miniature example:
“What kind of terrain might the
agent prefer, given that moving
from A to B took it T steps?”
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Inferred distributions (example)

Takeaways

The parameter values can be inferred based on summary observations
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Inferred distributions (example)

Takeaways

The parameter values can be inferred based on summary observations

The approximate distributions are similar to the true distribution
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Efficiency

Takeaways

Summing over all plausible trajectories is expensive with larger MDPs
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Takeaways
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The approximate methods scale significantly better
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Accuracy and model fit

Takeaways
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Accuracy and model fit

Takeaways

Good approximation performance while outperforming a random baseline
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Accuracy and model fit

Takeaways

Good approximation performance while outperforming a random baseline

Approximate methods continue performing well even with larger MDPs
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Realistic Experiment

We performed experiments using an RL model from cognitive science

User searched repeatedly for target items
from drop-down menus

The MDP contained a simple model of
human vision and short-term memory

Goal: infer values of three model parameters
based on observing task completion times
(TCT) and whether the target item was
present in the menu:
ξσ = (target present?,TCT )

visual fixation duration fdur
item selection duration dsel
menu layout recall probability prec
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Model fit

ABC Hold-out data
Task Completion Time (abs) 430 ms 470 ms
Task Completion Time (pre) 980 ms 970 ms

abs = target absent from menu, pre = target present in menu

Takeaways

Predictions with parameters inferred by ABC match to hold-out
observation data, indicating good model fit
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Model fit

ABC Hold-out data
Task Completion Time (abs) 430 ms 470 ms
Task Completion Time (pre) 980 ms 970 ms
Number of Saccades (abs) 1.4 1.9
Number of Saccades (pre) 3.1 2.2

abs = target absent from menu, pre = target present in menu

Takeaways

Predictions with parameters inferred by ABC match to hold-out
observation data, indicating good model fit

Also unobserved features match approximately to predictions
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Approximate posterior

Takeaway

Posterior indicates good identification of model parameter values

Remaining parameter uncertainty is easy to visualize
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Conclusions

We proposed two approximate methods (MC, ABC) for solving the
problem of trajectory-level observation noise in IRL

More scalable than exact likelihood

Good approximation quality

Full posterior inference, which is important due to noisy observations

We demonstrated applicability for a realistic cognitive science model based
on real observation data

Next steps: improve scalability

Still requires solving RL problems in the inner loop

Scalability of GP and BO to high dimensions

More details at the poster tomorrow
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