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Problem Setting Exact Likelihood Inference Algorithms

We wish to infer the task, preferences or limitations of users when

. - : : Algorithm 1 Exact Maximum Likelihood Inference Algo- Algorithm 2 Approximate Maximum Likelihood Infer-
they are performing complex decision tasks Assume both |S | and | A| are finite and that th_e maximum mfm 0 IRL.SD g ence Algorithm for IRL-SD
number of actions that can be performed within an ob- I — —
_ _ _ nput: M, =,, ©, H, Nyp Input: M, =,, ©, H, N,y
_ _ _ served episode 1s 1;,4,.. Denote the finite set of all plau- Outout: 0 Outout: 0
We use a Reinforcement Learning agent to model the behavior of the sible trajectories by Zq;, C §Tmas+1 5 ATmas. D“:‘:g' ML D“{_p'-:a' ML
user (ie. we define a parametric environment and a task o _ _ . . _
( P ) The likelihood for € given =, = (£14, ..., &N ) 1S NOW for i = 1to Ny do for : = 1 to Ny, do
0; < arg maxg Acq(6|D, H) 0; « arg maxy Acq(0|D, H)
Given observations of the user's behavior, we wish to infer the . Ty, < RL(Mp,) _ g efj;iUgﬂ(Mei)
parameters of the task and the environment L01%,) = H P(&io0)] = H { [P(&“I&)P(&w)ﬂ’ to +— — log L{6i|=,) Go ¢ o= ™ 20)
_ _ i=1 i=1  £;C€Zay D < {D, (0;,lg)} D« {D,(0;,ds)}
— Inverse Reinforcement Learning end for end for
where Oni < argming G, (0|D, H) Onrr, < argming G, (0| D, H)

P(&is|&i) = P(0(&) = &io),

New: We assume that the granularity of the observations is large
— only aggregate observations of user behavior and

— very common problem setting in practice, but no methods exist Ti—1 Expe rl me ntS

P(&10) = P(sh) T [m5 (st ai)P(siys s, af)].
t=0 Grid World Grid World

O U r CO ntrl b Utl O n S : : . Algorithm runtime (one step) Inference quality . B
Ap p rOXI m ate L I ke I I h OOd = Emgean duration of first step of inference _ | ror in ML estimation
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We propose an extension of the IRL problem, called Inverse
Reinforcement Learning from Summary Data (IRL-SD) Assume a function for generating summary datasets =5
given MDP M, parameters ¢, number of episodes IV, and

. . ot . functi . RLSUM(Mpy, N,o). Al
We derive a Bayesian likelihood for this problem, but demonstrate SUTIILY TAnCHon o (Mg, N, ). Also assume a
discrepancy function 0,

that it may be very expensive to evaluate 10’} —. l
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We propose an approximate ABC-likelihood that is faster to evaluate which quantifies the dissimilarity between two observation

datasets. 07l
Visual search in drop-down menus

Full posterior estimation
de ~ 5(RLSUM(J?\/L9.} |EJ |ﬁ g)j EJ) ) | Unnormalized posteriors, qpproximo’re method

I R L_S D P r'O b I e m The distribution of dg corresponds with the ability of 6 to

satisfy our requirements for solving the IRL-SD problem.
Finally we define an approximate likelihood function,

We propose a BO method for performing inference

By combining RLSUM(Mpy, |Z,|, o) with §, we define
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Let M be a MDP (S, A, T, R, ) with parameters . Let
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the true parameters be 6* € O and assume agent behav- L-(0|=,) = P(dy < £|0), = T T AOPROX BB oo APPROX  EE 1okl APPROX
ing according to an optimal policy for Mpy+. Assume the ”
agent has taken paths (&;,...,&n) and we observe sum- where the approximation threshold ¢ € |0, 00). |
maries —, = (é-laa e o aé-NJ)a where gig ~ 0_(51) and o Discrepancy Prior o
1s a known summary function. The inverse reinforcement e S
learning problem from summary data (IRL-SD) 1s then: Z
Given (1) set of summaries =, of an agent demonstrating \_' € .

. . . Conclusion
optimal behavior; (2) summary function o; (3) MDP M : : ey : : : : : _
with ¢ unknown: (4) bounded space ©; and optionally (5) Unnormalized likelihood Unnormalized posterior Regarding partial observability in IRL, there now exists formulations for three different situations:
prior P(0). (1) Agent has partial observability of the environment state — POMDP model
Estimate § € O such that simulated behavior from Mg (2) External observer has partial observability on state level — traditional IRL methods can be extended
agrees with =, or the posterior (6|Zo). New: (3) External observer has partial observability on path level — presented methods for IRL-SD can be used




	Slide 1

