

Modelling Human Decision-making based on Aggregate Observation Data

Problem Setting

We wish to infer the task, preferences or limitations of users when they are performing complex decision tasks

We use a Reinforcement Learning agent to model the behavior of the user (ie. we define a parametric environment and a task)

Given observations of the user's behavior, we wish to infer the parameters of the task and the environment \rightarrow Inverse Reinforcement Learning

<u>New</u>: We assume that the granularity of the observations is large \rightarrow only aggregate observations of user behavior

 \rightarrow very common problem setting in practice, but no methods exist

Our Contributions

We propose an extension of the IRL problem, called Inverse Reinforcement Learning from Summary Data (IRL-SD)

We derive a Bayesian likelihood for this problem, but demonstrate that it may be very expensive to evaluate

We propose an approximate ABC-likelihood that is faster to evaluate

We propose a BO method for performing inference

IRL-SD Problem

Let M be a MDP (S, A, T, R, γ) with parameters θ . Let the true parameters be $\theta^* \in \Theta$ and assume agent behaving according to an optimal policy for M_{θ^*} . Assume the agent has taken paths (ξ_1, \ldots, ξ_N) and we observe summaries $\Xi_{\sigma} = (\xi_{1\sigma}, \ldots, \xi_{N\sigma})$, where $\xi_{i\sigma} \sim \sigma(\xi_i)$ and σ is a known summary function. The inverse reinforcement *learning problem from summary data (IRL-SD)* is then:

Given (1) set of summaries Ξ_{σ} of an agent demonstrating optimal behavior; (2) summary function σ ; (3) MDP M with θ unknown; (4) bounded space Θ ; and optionally (5) prior $P(\theta)$.

Estimate $\theta \in \Theta$ such that simulated behavior from $M_{\hat{\theta}}$ agrees with Ξ_{σ} , or the posterior $P(\theta|\Xi_{\sigma})$.

Exact Likelihood

Assume both |S| and |A| are finite and that the maximum number of actions that can be performed within an observed episode is T_{max} . Denote the finite set of all plausible trajectories by $\Xi_{ap} \subseteq S^{T_{max}+1} \times A^{T_{max}}$.

The likelihood for θ given $\Xi_{\sigma} = (\xi_{1\sigma}, \ldots, \xi_{N\sigma})$ is now

$$\mathcal{L}(\theta|\Xi_{\sigma}) = \prod_{i=1}^{N} \left[P(\xi_{i\sigma}|\theta) \right] = \prod_{i=1}^{N} \left[\sum_{\xi_i \in \Xi_{ap}} \left[P(\xi_{i\sigma}|\xi_i) P(\xi_i|\theta) \right] \right],$$

where

$$P(\xi_{i\sigma}|\xi_i) = P(\sigma(\xi_i) = \xi_{i\sigma})$$

$$P(\xi_i|\theta) = P(s_0^i) \prod_{t=0}^{T_i-1} \left[\pi_{\theta}^*(s_t^i, a_t^i) P(s_{t+1}^i|s_t^i, a_t^i) \right].$$

Approximate Likelihood

Assume a function for generating summary datasets Ξ_{σ}^{sim} given MDP M, parameters θ , number of episodes N, and summary function σ : RLSUM (M_{θ}, N, σ) . Also assume a discrepancy function δ ,

$$\delta(\Xi^A_{\sigma}, \Xi^B_{\sigma}) \to [0, \infty),$$

which quantifies the dissimilarity between two observation datasets.

By combining RLSUM $(M_{\theta}, |\Xi_{\sigma}|, \sigma)$ with δ , we define

$$d_{\theta} \sim \delta(\operatorname{RLSUM}(M_{\theta}, |\Xi_{\sigma}|, \sigma), \Xi_{\sigma}).$$

The distribution of d_{θ} corresponds with the ability of θ to satisfy our requirements for solving the IRL-SD problem. Finally we define an approximate likelihood function,

$$\tilde{L}_{\varepsilon}(\theta|\Xi_{\sigma}) = P(d_{\theta} \le \varepsilon|\theta),$$

where the approximation threshold $\varepsilon \in [0, \infty)$.

Conclusion

Regarding partial observability in IRL, there now exists formulations for three different situations: (1) Agent has partial observability of the environment state \rightarrow POMDP model (2) External observer has partial observability on state level \rightarrow traditional IRL methods can be extended <u>New:</u> (3) External observer has partial observability on *path* level \rightarrow presented methods for IRL-SD can be used

Antti Kangasrääsiö Samuel Kaski

first.last@aalto.fi